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Abstract

The interface failure observed in quasi-static fiber pushout tests performed on a model fiber-reinforced composite is
simulated using a cohesive volumetric finite element scheme. The numerical analysis is conducted under axisymmetric
condition. The debonding process is captured with the aid of intrinsic rate-independent cohesive elements. The aug-
mented Lagrangian approach is used to solve the frictional contact between the crack faces. The numerical method is
first applied to a model polyester/epoxy system, showing excellent agreement with the experimentally obtained load-
deflection curve and with the observed evolution of the debonding length. The numerical scheme is then further applied
in a parametric study of the effects of the friction coefficient, the interfacial bond strength and the process-induced
residual stresses on the fiber—matrix interface failure process. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

When a crack propagates in a composite material in a direction perpendicular to that of the reinforcing
fibers, the failure process is quite complex and typically involves matrix cracking, fiber/matrix debonding,
fiber pullout and fiber breakage. Of these four failure mechanisms, the fiber/matrix debonding and the
frictional fiber pullout are generally considered as the most important source of energy dissipation and have
therefore been the focus of the majority of research efforts dedicated to that topic.

To better characterize these two failure processes, several researchers have conducted fiber pullout and
pushout experiments on a model composite (Fig. 1) involving a single fiber composite system. The fiber
diameter is chosen one to three orders of magnitude larger than that of the actual composite reinforcement
to allow for a better control and visual analysis of the failure process. In these experiments, the “macro-
fiber” is slowly pulled or pushed out of the surrounding matrix (Bowling and Groves, 1979; Atkinson et al.,
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Fig. 1. Schematic of a pushout test of a model composite system.

1982; Khanna and Shukla, 1994; Tsai and Kim, 1996; Bechel and Sottos, 1998a,b,c). The critical interface
parameters, such as the fracture toughness and the coefficient of friction, are then extracted from the
evolution of the load applied on the fiber (P) and the resulting displacement of the pushout/pullout tool
(4,), and from observations of the propagation of the debonding front. A typical force—displacement curve
obtained for a pushout test is shown in Fig. 2. After an initial stage in which the specimen settles on its
support, a linear response corresponding to perfect fiber/matrix bonding is measured (stage I). Then, as the
load increases, a crack initiates from the top of the specimen and starts to propagate along the interface,
leading to a non-linear force/displacement relation (stage II). The debonding process is initially stable; but,
as the crack length reaches a critical value, the failure process becomes unstable and leads to a sudden
complete debonding of the fiber from the matrix. This instability is followed by the frictional sliding of the
fiber out of the surrounding matrix (stage III).

Although the above description is representative of many experiments, it has to be modified in many
situations to account for variations in the debonding and sliding events. For example, for a range of
material systems involving a very large stiffness mismatch, the crack does not initiate from the top surface
of the specimen, but from the bottom part instead (Bechel, 1997; Bechel and Sottos, 1998a,c). Another
example concerns the type of debonding and sliding process: it can be continuous as a crack initiates from
one end of the fiber and progressively expands along the whole fiber length (Bechel and Sottos, 1998a; Tsai
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Fig. 2. A typical load—deformation curve obtained in a pushout test.
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and Kim, 1996), or discontinuous as a dislocation-like sliding zone propagates along the fiber/matrix in-
terface in a manner similar to that of Schallamach waves observed in rubbery materials sliding over a hard
surface (Kendall, 1975; Tsai and Kim, 1996). Depending on the fiber surface roughness and the amplitude
of the compressive residual stresses acting along the interface, the sliding process (stage I1I) can also be
either continuous, or involve a stick-slip process.

Various analytical investigations have been conducted to interpret these experiments. One of the most
successful approaches is based on the shear lag theory (Shetty, 1988; Hutchinson and Jensen, 1990; Kerans
and Parthasarathy, 1991; Liang and Hutchinson, 1993). This approach involves the following assumptions:
the axial load acting on the fiber is transmitted to the matrix solely through shear stresses acting on the
interface; the surface or end effects are neglected; the compressive (residual) radial stress is assumed to be
uniform; and the debonding front initiates from the top of the sample, not from the bottom. Although
somewhat restricted by these assumptions, this analytical treatment of the fiber pullout/pushout tests has
the major advantage of providing a closed-form solution of the problem, allowing a quick characterization
of the effects of the many parameters entering the problem such as the fiber length and radius, the process-
induced residual stress, the friction coefficient and the fiber/matrix modulus mismatch. However, as shown
by Bechel and Sottos (1998a,b), by neglecting the end effects, the shear-lag theory tends to underestimate
the debond length observed in the second stage of the experiment, and thereby to over-predict the interface
fracture toughness. However, the shear lag is in some cases successful in extracting the friction coefficient
from the initial part of the stage III force—displacement curve.

Other analytical techniques have also been used to support the fiber pullout/pushout experiments. Liang
and Hutchinson (1993) used the finite element method to determine the range of validity of the shear lag
method. Kallas et al. (1992) also adopted the finite element scheme to compute the stress distribution
corresponding to the pushout test when the fiber and the matrix are fully bonded. The same numerical
method was also used by Beckert and Lauke (1995) and by Chandra and Ananth (1995) to extract interface
failure properties. Freund (1991) solved the integro-differential equation governing the axial stress in the
fiber to study the sliding of a fiber in a hole in an elastic material. In their finite element simulation of a rigid
rod pulled out of an elastic matrix, Povirk and Needleman (1993) used a rate- and state-dependent friction
model to capture the aforementioned dislocation-like frictional sliding of the fiber. The effect of more
complex friction models is also the topic of the analytical investigations presented by Tsai and Kim (1996).

The emphasis of the numerical work summarized hereafter is however somewhat different: while the
majority of the existing analytical work has focused on the frictional sliding of the debonded fiber (stage
IIT), we aim at capturing the progressive failure of the fiber/matrix interface and the associated frictional
contact of the newly created fracture surfaces (stage II). Unlike the shear lag approach, the method used in
this work captures the stress concentrations associated with the end effects and with the advancing crack
front. Although the method can be applied to both fiber pullout and pushout problems, we primarily
simulate the failure events associated with the fiber pushout test to allow for comparison with a set of very
detailed experimental observations recently obtained by Bechel and Sottos (1998a,b,c).

The method used in this analysis is a special axisymmetric version of the cohesive/volumetric finite ele-
ment (CVFE) scheme, which has recently been used by many research groups in the modeling of various
quasi-static (Needleman, 1987; Tvergaard and Hutchinson, 1992; Lin et al., 1997; Lin et al., 1998) and
dynamic (Camacho and Ortiz, 1996; Needleman, 1997; Geubelle and Baylor, 1998) fracture events in-
volving the initiation, propagation and/or arrest of cracks. The particular implementation of the CVFE
scheme used in the present study involves a bilinear rate-independent intrinsic cohesive model, coupled with
a frictional contact element.

The paper is organized as follows: the numerical scheme and the problem description are summarized in
the next section, followed, in Section 3, by a comparison between experimental observations and numerical
results for a model polyester/epoxy composite system. Section 3 also contains a parametric study of the
effect on the failure process of some important quantities such as the fracture energy, the residual stresses,
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the friction coefficient, etc. These results are further discussed in Section 4, which also contains a brief
presentation of a fiber pullout simulation.

2. Problem formulation
2.1. Finite element formulation

The finite element analysis is based on an Eulerian formulation due to McMeeking and Rice (1975).
Attention is confined to quasi-static deformations, and, with body forces neglected, the principle of virtual
work is written as

ﬁ |:’C;; 5D,'j — %O'ij 5(2Dikaj — Uk Uk‘j):| dv +A 8¢dS = A T[éU,'dS, (1)

int ext
where all integrations are performed in the current equilibrium configuration; V, Sj,, and S, denote the
volume, interfacial surfaces and extemal surfaces, respectively; 7;; is the Kirchhoff stress and T its Jaumann
rate; o;; denotes the Cauchy stress; 7' represents the nominal surface traction rates based on the current
surface area; u; and v; are the displacement and displacement rate fields, respectively; v;; corresponds to
0v; /0x;, where x; is position vector of a material point in the current state. Finally, D;; is rate of deformation
tensor defined as

Dy = (viy +v;,)/2. (2)

The virtual interfacial work 8¢ appearing in Eq. (1) is specified next.

2.2. The cohesive zone model

The cohesive zone model consists of a constitutive relation between the tractions T acting on the in-
terface and the corresponding interfacial separation A (displacement jump across the interface). In the
present work, we use an intrinsic cohesive failure model, in which, as the interface separates, the magnitude
of T increases, reaches a maximum and then progressively falls to zero as complete separation occurs.
Various interfacial constitutive relations exhibiting this qualitative behavior can be constructed: expo-
nential (Needleman, 1987, 1997), trapezoidal (Tvergaard and Hutchinson, 1992) and bilinear (Geubelle and
Baylor, 1998) to cite a few examples.

In the present study, we modify the rate-independent bilinear cohesive failure model used by Geubelle
and Baylor (1998) to account for frictional contact between the newly created fracture surfaces. Friction
sliding is assumed to obey the Coulomb friction law (with a constant friction coefficient u), yielding the
following relation between the normal (7;) and tangential (7;) cohesive tractions and the normal (4,) and
tangential (4,) displacement jumps:

L [Een o 9<in, ®)
n — ‘TT% ]J%(Sna for 6 > (Smax
Tmax A_;
g L for 0 < dms @
CT Y omax  1-0 A&
(TTI % A_fét’ for 6 > 5max

for 6, > 0, and
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for 0, = 0. In the latter case, the normal traction across the interface is calculated by a contact algorithm
(see below) to enforce the condition o, = 0.

In Egs. (3)-(5), o4, 6, and I respectively denote the nondimensional normal, tangential and total dis-
placement jumps, defined by

7A( 7AI] o 2 2
5l7A7f’5n7A7;757v51+5m (6)

where 4; and 4 are the critical normal and tangential separations at which complete separation is as-
sumed.

The variation of the normal and tangential traction components with respect to 4, and 4, corresponding
to pure opening (4, = 0) and pure shear separation (4, = 0) are shown in Fig. 3a, b. The maximum value of
T, is omax and occurs at 4, = dmaxA4;. The maximum value of |Tj| is Tmax given by

Tmax — O-maxAﬁ/Af; (7)

and is attained at |4,| = dmax4;. The normal (I'y) and tangential (I')) works of separation per unit area of
interface are given by

c
_ Omax 4 n

2 )

c
_ ‘CmaxAt

2 (8)

Note that Egs. (7) and (8) imply that I', = I';. Although not really required, this assumption greatly
simplifies the implementation of the quasi-static cohesive volumetric finite element scheme, since it results in
a symmetric stiffness matrix. As the failure process observed in the fiber pushout problem is almost ex-
clusively in shear and involves an almost negligible contribution from the opening (normal) mode, this
assumption is not expected to have any impact on the solution.
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Fig. 3. Cohesive law. (a) Normal traction 7;, as a function of the normal separation ¢, for §; = 0; (b) shear traction 7; versus shear
separation J; for J, = 0. The solid and dotted curves correspond to a shear cohesive failure for a frictional (1 > 0) and frictionless
(1 = 0) contact, respectively.
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As can be seen from Eqgs. (3)—(5), the response at each point of along interface is characterized by four
parameters: Omax, Omax, 4; and 45. The number of parameters can be reduced to three since the results are
almost insensitive to dy.x as long as the stiffness of interface elements is larger than that of the surrounding
volumetric elements.

To account for frictional contact between the newly created fracture surfaces, the Kuhn-Tucker con-
ditions for Coulomb friction are specified for the part of interface that has debonded:

® = |Ti| — u|To| <O, ©)
.0

i = 5a—ﬂ¢, (10)
=0, (11)
&P =0, (12)

where u is the coefficient of friction. Egs. (10) and (11) mandate that sliding occurs in the direction opposite
that of the applied shear traction, and Eq. (12) enforces the condition that slip may only take place when
¢ =0, ie, when |Ti| = p|T,|. If |T| < p|T,|, then i, = 0 and stick conditions are assumed along the in-
terface.

The interfacial component of the virtual work is then written as

/ 6(13dS:/ [%ﬁnaﬁn+%An54’|t+%45ﬁn+@454 ds. (13)
Sint Sint

04, 04, 04, 04,

In conclusion, the interface is discretized in a series of interface elements, henceforth referred to as cohesive
elements. Prior to interface debonding, Eqs. (3)—(5) are used to describe the evolution of the normal and
tangential tractions acting across the interface elements for which 4, > 0 and evolution of the tangen-
tial traction component where surfaces of cohesive elements are in contact (4, = 0). The augumented
Lagrangian treatment (Simo and Laursen, 1992) is used to constrain the frictional sliding along the
debonded interface and to enforce the appropriate contact condition. It has to be noted however that the
enforcement of the contact condition along the sliding cohesive elements is only local, as contact is only
checked between originally adjacent volumetric elements. While this approach is not adequate to capture
the third stage of the pushout experiment characterized by substantial relative motion of the fiber and the
matrix, it is expected to be applicable to simulate the progressive failure process taking place during stage II.

2.3. Finite element model

A sketch of the model composite specimen, which includes the various quantities defining the geometry
and the material properties of the fiber and the matrix, has been presented in Fig. 1. As indicated earlier, the
finite element analysis is conducted under axisymmetric condition. Perfect bonding between the matrix and
the fiber is assumed at the beginning of the simulation. Frictionless contact is assumed between the punch
and the fiber, and between the bottom side of the matrix and the support. The analysis is performed in two
steps: in the first one, the process-induced residual stresses associated with the chemical shrinkage expe-
rienced by the matrix are computed by treating the shrinkage strains as residual thermal strains present in
the matrix. In the second step, the axial punch displacement 4, is applied on the top of the fiber, and the
corresponding punch force P is determined by summing the reaction force on the punch nodes.

The finite element mesh used in the majority of the simulations will be shown later in its deformed
configuration in Fig. 6. It consists of 1024 four-noded volumetric elements and 104 four-noded cohesive
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Fig. 4. Effect of the mesh size on the finite element predictions of the punch load versus displacement curve (a), and of the evolution of
the debond length (b).

elements evenly distributed along the fiber/matrix interface, for a total of 1268 nodes. To examine the effect
of the mesh size on the solution, three discretizations have been considered: the mesh shown in Fig. 6 is
labeled Mesh 2; Mesh 1 is twice as coarse, with only 52 elements along the interface, and Mesh 3 is twice as
fine with 208 interface elements. A comparison between the results obtained with these three dicretizations
is presented in Fig. 4, showing almost perfect similarity both for the predicted punch force/displacement
curve and for the evolution of the length of the debonding crack.

In the next section, the effect of various parameters such as opax, Er/En and u on the debonding and
frictional sliding processes are investigated. We do not however examine the effect of the specimen di-
mensions, which are henceforth chosen to match those used in the experiments performed by Bechel and
Sottos (1998a): fiber radius 7 = 0.95 mm, specimen radius r,, = 4.3 mm, specimen thickness H = 5.36 mm
and support inner radius »; = 1.025 mm.

3. Results
3.1. Comparison between experiment results and numerical predictions

In order to determine whether the cohesive/volumetric finite element scheme can adequately capture the
failure process associated with the second stage of the pushout test, we first attempt to simulate Bechel and
Sottos’ (1998a) experiments performed on a polyester/epoxy model composite. The elastic properties of the
constituents are E; = 2500 N/mm?, v; = 0.35, E,, = 4000 N/mm? and v, = 0.33.

The experimentally measured chemical matrix shrinkage strain is given by ey, = —0.0022. Bechel and
Sottos (Bechel, 1997) extracted the friction coefficient, ¢ = 0.52, from Stage II data and the mode II in-
terface fracture toughness, G§; = 0.11 N/mm, from Stage III measurements. Since shear failure is by far the
dominant failure mechanism in this case, it is assumed that 4; is equal to 4.

This first set of simulations with the CVFE scheme constitutes therefore an excellent test for the nu-
merical method, since we are left with a single parameter (o,,.x) to be determined to match the experi-
mentally obtained punch force/displacement curve. It is found that a value of o, equal to 22 N/mm?
provides the best match, as indicated in Fig. 5a. Note how precisely the numerical results capture both the
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Fig. 5. Comparison between experimental measurements and numerical predictions for a pushout test performed on a polyester/epoxy
model composite: (a) load versus punch displacement; (b) debonding length versus punch displacement; (c) cohesive and friction
energies versus punch displacement.

shape of the nonlinear force/displacement curve associated with the debonding process and the onset of
instability. Although these experimental results were not part of the curve fitting exercise, excellent
agreement is also achieved between the numerical prediction (solid curve) and the experimental observa-
tions (solid curve with symbols) of the evolution of the debonding length, as indicated in Fig. 5b. A view of
the deformed mesh corresponding to a debond length L, = 3 mm is shown in Fig. 6. For comparison
purpose, the debond length prediction obtained with the shear lag method (Bechel and Sottos, 1998a) is
also presented in Fig. 5b. The inability of the shear lag approach to adequately capture the edge effects
associated with the large shear stress concentration present along the edges of the fiber/matrix interface is
clearly visible. The slope of the debond length versus punch displacement curve corresponding to the shear
lag solution is also different from the experimental and numerical values.

An important advantage of the numerical analysis is its ability to provide an insight on the energetics of
the failure process, and, in particular, on the relative importance of the energy dissipated in the cohesive
failure itself compared to that dissipated in the frictional sliding. These two components of the energy are
plotted in Fig. 5c as a function of the punch displacement. As expected, after initiation of the debonding,
the cohesive fracture work (i.e., the energy that would be required at that stage of the experiment to further
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Fig. 6. Deformed mesh.

advance the crack by a small amount) remains constant prior to final complete debonding. In contrast, the
frictional dissipative work increases dramatically as the crack length and the frictional shear stress increase,
as described in the next section.

3.2. Parametric studies

Many parameters affect the overall load-deformation and fracture behavior of the composite. A di-
mensional analysis identifies the following nondimensional groups

L. P Ay Omax?t Er H ry r
o p Omax m s
— and Gic_ n\ —, G* 7F,vl‘7vmaelh,,uviai77 . (14)
re 11 re 11 m re re Ie

In this section, we systematically study the effects of some of the nongeometrical parameters, and, in
particular, of the stiffness mismatch (E¢/E,,), friction coefficient (x), matrix residual strain (ey) and inter-
facial strength (oy.x). Unlike in the previous section, our intent here is not to simulate a specific material
system, but to provide some insights on the effect of the chosen parameters on the overall deformation
behavior and failure process of the model composite. The results of a polyester/epoxy fiber composite
shown in the previous section are taken as a reference and always denoted by a solid curve. Unless stated
otherwise, the other parameters used in the following calculations are the same as those used in Section 3.1.

3.2.1. Effect of stiffness mismatch (E;/E,)

Experimental results (Bechel and Sottos, 1998a) have indicated that the fiber-to-matrix stiffness ratio
(Et/En) has a significant effect on the failure mechanism of the model composite, especially with regards to
the appearence of a top versus bottom debond. This fact is confirmed in Fig. 7a, b, which respectively
present the predicted punch load-displacement curve and the crack length evolution for four values of
E¢/Enm.
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Fig. 7. Effect of the fiber-to-matrix modulus ratio E¢/E,: (a) punch load versus displacement; (b) evolution of the debond length; (c)
map of top and bottom debonding for various of E;/E,, and €. In (b), a top debond is predicted for the lower two values of E;/E,, and
a bottom debond for the other two values.

The maximum punch force P remains fairly constant (about 430 N) when E;/E,, < 3 but begins to drop
for higher values of the stiffness ratio. This behavior appears to be related to a transition in the crack
initiation process: for E;/E,, > 4, the debonding initiates at the bottom end of the fiber—matrix interface
and advances upward until complete failure occurs. In contrast, for E¢/E,, < 2, a top debond is obtained.
For the intermediate range of stiffness ratio (2 < E¢/E,, < 4), both types of crack initiation are predicted.
All top debond cases involve quasi-exclusively mode II type of failure, as the crack faces are constantly in
contact over their entire length. For the bottom debonding situations, some opening is observed and the
failure process takes place under mixed mode conditions, especially for the initial stages of the interface
debonding. However, prior to the complete debonding of the interface, the originally separated failure
surfaces enter into contact and the later stages of the failure process take place under purely mode II
conditions.

A map summarizing the combined effect of the residual strain and the modulus mismatch on the type of
debond is presented in Fig. 7c, showing a trend very similar to that observed experimentally, as compiled by
Bechel and Sottos (see Fig. 9 of Bechel and Sottos 1998a). As was the case in the experimental results, the
type of failure (top versus bottom debond) seems to depend very little on the amplitude of the residual
strain. Further comments on the effect of the residual strains are presented below.
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3.2.2. Effect of friction coefficient (1)

As discussed in Section 3.1, friction between the newly created crack faces plays a crucial role in the
energetics of the overall failure process, especially for composite systems characterized by the presence of
high compressive residual stress acting across the fiber/matrix interface. As seen in Fig. 8a which presents
the predicted load versus punch displacement curves for four values of the friction coefficient (u = 0, 0.32,
0.52 and 0.72), it also plays a major role on the stability of the failure process by significantly increasing the
load carrying and deformation capabilities of the composite specimen and by delaying the onset of cata-
strophic failure. The friction coefficient does not seem to affect the type of failure, however, as a top debond
was observed in all four cases.

The predicted debond length versus punch displacement is shown in Fig. 8b. Increased friction signifi-
cantly delays the interfacial debonding, confirming the results presented in the previous figure. Debonding
initiation is associated with an approximate | mm pop-in (unstable debonding) for all cases. As the punch
displacement 4, is further increased, the debond length increases almost linearly with 4,, with the slope
strongly dependent on the friction coefficient. It is interesting to note, however, that while delaying the final
unstable failure of the specimen by substantially increasing the load capability of the specimen, the friction
coefficient does not appear to affect the value of the crack length at which instability is predicted to occur: in
all cases, this crack length is approximately 3.7 mm.

3.2.3. Effect of residual strain (€,)

Process-induced residual strains present in a composite are associated with the mismatch in coefficient of
thermal expansion between the constituents and/or with the chemical shrinkage in the thermosetting ma-
trix. Whatever their origin, they result in a larger relative contraction of the matrix and induce normal
(compressive) and shear stresses along the interface. These pre-existing stresses, in turn, strongly affect the
frictional sliding of the fiber, as illustrated in Fig. 9a, which displays the predicted punch load versus
displacement curves for three thermal residual strain values, e;, = —0.0011, —0.0022, —0.0044.

An effect similar to that of the friction coefficient is observed, except with regards to the initiation phase:
while the friction coefficient has (obviously) no effect on the value of the punch load at which the initial
debonding front is predicted to appear, higher values of the residual strains delay the appearence of the
initial unstable short crack, which signals the start of stage II of the experiment. The other effects of the
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Fig. 9. Effect of the thermal residual strain ¢, on the force versus punch displacement curve (a), and on the crack propagation (b).

residual strain are similar to those associated with the friction coefficient: higher maximum load, delayed
final instability and modified slope of the crack length versus punch displacement curve (Fig. 9b).

3.2.4. Effect of interfacial strength (0,.)

As discussed in Section 2.2, three parameters characterize the present cohesive failure model, i.e., Gy,
47 and 4;. To limit the number of parameters, it has been assumed that 47 = 4;, which, as indicated earlier,
is not expected to affect the simulation results since shear failure is by far the dominant mechanisms in the
great majority of fiber pushout problems. This assumption leaves us with two parameters: o, and 4;. In
this section, we examine the effect of the interfacial strength o,,,, on the failure process, for a fixed value of
the critical displacement jump 47 = 47 = 0.01 mm.

Fig. 10a, b show how o, affects the failure process by delaying the onset of stage II and by increasing
the maximum load obtained just prior to the final unstable crack propagation. As expected, the frictional
sliding is not affected by a,,,x and the slope of the punch load versus displacement curve is the same in all
three cases prior to debonding.

4. Discussion

The basic failure mechanism in brittle fiber/matrix composites involves: (1) brittle fracture of the fiber
and the matrix, and (2) debonding and frictional sliding along the fiber/matrix interface. The present work
has focused on the numerical simulation of the second mechanism. A simple rate-independent cohesive
failure model coupled with a Coulomb friction model, allowing for the simulation of crack initiation and
propagation under shear-dominated conditions has been incorporated in an axisymmetric finite element
model of the pushout test performed on a model polyester/epoxy composite. Comparisons between the
numerical prediction and the experimental data summarized in Fig. 5a, b indicate that the present model
captures the observed failure process very well. By comparing the relative importance of the energy as-
sociated with the cohesive failure process and that dissipated in the frictional sliding of the crack faces (Fig.
Sc), it can be concluded that the latter process plays by far the most important role in the composite overall
fracture toughness.
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Fig. 10. Effect of the interfacial strength o,,,x (given in MPa): (a) load versus punch displacement; (b) debonding length versus punch
displacement.

Further insight on that process can be obtained from Fig. 11a, b, which respectively present the evo-
lution of the distribution of shear (7;) and radial (7;) traction stresses acting along the interface for the
polyester/epoxy composite discussed in Section 3.1 at several loading stages corresponding to debonding
lengths L. = 1, 2, 3 and 5.36 mm. Recall that the origin of the z-axis is located at the bottom side of the
specimen, but the crack length L. is measured from the top of the specimen. A very high friction-induced
shear stress, higher than the shear stress computed in the cohesive elements located ahead of the debonding
tip, is observed near the top end of the fiber/matrix interface. This frictional shear stress increases as the
crack propagates downward, as the increasingly compressed fiber try to expand in the radial direction and
is constrained by the surrounding matrix, itself shrinking under the effect of the residual strains.
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Fig. 11. Evolution of the interfacial stress distribution during the debonding process: (a) shear traction 7;(z); (b) normal traction 7;(z).
The debond length L. is given in mm.
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This fact seems to indicate that the friction coefficient and the residual compressive radial stresses are the
most important parameters affecting the overall fracture toughness of the composite. Both parameters
result in a higher load carrying capacity and substantially delay the instability associated with the complete
fiber-matrix interface debonding. However, by preventing the relative sliding of the crack faces, an ex-
cessive value of the friction stresses may result in a reduction of the extent of debonding which in turn may
result in premature fiber or matrix fracture. This suggests that there exist an optimal friction level and an
optimal value for the residual stresses which maximize the overall fracture toughness of the composite.
Although the CVFE scheme used in the present study could also be used to model the brittle failure of the
matrix and the fibers, the study of the transition between these different types of failure mechanisms is
beyond the scope of the present work. Finally, while the correct characterization of friction sliding of a fiber
embedded in a matrix remains an open issue, the present work based on a simple Coulomb friction law
seems to reproduce the experiments quite well.

As a final illustration of the essential role of the frictional contact on the stability of the failure process, a
comparison between fiber pushout and pullout tests is presented in Fig. 12, in terms of the punch force/
displacement curve (Fig. 12a), debond length versus punch displacement curve (Fig. 12b) and distribution
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Fig. 12. Comparison of fiber pushout and pullout tests: (a) load versus punch displacement; (b) debond length versus punch dis-
placement; (c) distribution of shear traction (7;) along the interface for a debond length L. = 3 mm.
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of the interfacial shear stress (Fig. 12¢). The geometry and material properties are the same as those used in
Section 3.1. Note the drastic difference in deformation and failure behaviors: due to the absence of contact
behind the advancing crack front, the pullout solution is much less stable and yields a maximum punch load
equal to less than a quarter of that obtained in the pushout test.

It is worthnoting once again that the cohesive zone model is not limited to the prediction of interfacial
failure. As indicated earlier, this phenomelogical failure model has been successfully used to describe a
broad range of fracture processes in a wide variety of material systems. In order to have truly predictive
capabilities, however, this type of failure model must rely on carefully designed and conducted experiments
to extract the defining quantities (normal and shear strengths, critical displacement discontinuities, etc.).
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